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Abstract. Plant enemies that attack chemically similar host species are thought to mediate
competitive exclusion of chemically similar plants and select for chemical divergence among closely
related species. This hypothesis predicts that plant defenses should diverge rapidly, minimizing phylo-
genetic signal. To evaluate this prediction, we quantified metabolomic similarity for 203 tree species
that represent >89% of all individuals in large forest plots in Maryland and Panama. We constructed
molecular networks based on mass spectrometry of all 203 species, quantified metabolomic similarity
for all pairwise combinations of species, and used phylogenetically independent contrasts to evaluate
how pairwise metabolomic similarity varies phylogenetically. Leaf metabolomes exhibited clear phylo-
genetic signal for the temperate plot, which is inconsistent with the prediction. In contrast, leaf meta-
bolomes lacked phylogenetic signal for the tropical plot, with particularly low metabolomic similarity
among congeners. In addition, community-wide variation in metabolomes was much greater for the
tropical community, with single tropical genera supporting greater metabolomic variation than the
entire temperate community. Our results are consistent with the hypothesis that stronger plant-enemy
interactions lead to more rapid divergence and greater metabolomic variation in tropical than temper-
ate plants. Additional community-level foliar metabolomes will be required from tropical and temper-
ate forests to evaluate this hypothesis.

Key words: anti-herbivore defense; Barro Colorado Island; chemical ecology; forest ecology; mass spectrometry;
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INTRODUCTION

Foundational hypotheses in community ecology and evo-
lution posit a central role for plant secondary metabolites in
the maintenance and generation of species richness in plant
communities. Qualitative differences in chemical defenses
against herbivores and pathogens can distinguish plant
species in the eyes of their natural enemies, allowing plant
species to carve out “niches” defined by the insects and
microbes they support and those they avoid. Gillett (1962)
first proposed that the resulting reduction in shared enemies
might reduce enemy-mediated negative interactions among
heterospecific individuals, and hence facilitate coexistence.
Ehrlich and Raven (1964) extended the concept to
macroevolution, proposing that selection for novel defenses
drives reciprocal coevolution, and ultimately speciation, in
plants and their enemies.
If biotic interactions have played a strong role in shaping

plant communities, co-occurring species should exhibit

interspecific variation in secondary metabolites, even
amongst close relatives. Focused studies of tropical tree gen-
era have found that congeneric species are often remarkably
divergent in secondary metabolites (Becerra 1997, Kursar
et al. 2009, Fine et al. 2013, Richards et al. 2015, Salazar
et al. 2016, Sedio et al. 2017). However, few studies have
pursued untargeted metabolomics in a community or evolu-
tionary context (Macel et al. 2014, Richards et al. 2015,
Mason et al. 2016, Sedio et al. 2017) and none has exam-
ined interspecific metabolomic variation in a forest at the
community scale.
Many thousands of compounds influence plant-animal

interactions. Most plants produce complex mixtures of
metabolically diverse secondary metabolites with multiple
functions, and the structures and identities of most sec-
ondary metabolites remain unknown (Wang et al. 2016).
This combination of vast diversity, unknown structure and
function, and rarity of secondary metabolites has precluded
the pursuit of comparative metabolomics at the large taxo-
nomic scales necessary for the study of whole communities
(Sedio 2017). However, recent innovations in mass spec-
trometry (MS) informatics make it possible to compare the
structures of thousands of unknown metabolites from
diverse chemical classes in hundreds of plant species simul-
taneously. Here, we quantify the structural similarity of all
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compounds, including the many unidentified compounds, in
methanol extracts of leaf tissue. We then quantify chemical
similarity for all pairwise combinations of species, incorpo-
rating shared compounds and the structural similarity of
compounds unique to one species in each pair (Sedio et al.
2017). We assess interspecific chemical similarity among 138
tropical and 65 temperate plant species from forests in
Panama and Maryland, USA, respectively. Within each
community, we ask to what extent foliar metabolomes differ
among species, including congeneric species, and whether
they exhibit phylogenetic signal. If biotic interactions have
played a strong role in shaping the secondary metabolomes
of these plant communities, co-occurring species should
exhibit interspecific variation in secondary metabolites and
phylogenetic signal should be largely absent.

MATERIALS AND METHODS

Study sites and species

Barro Colorado Island (BCI), Panama (9°90 N, 79°510 W),
supports tropical moist forest. The 2010 census of a 50-ha
forest dynamics plot (FDP) recorded 301 species with individ-
uals ≥1 cm in diameter at breast height (DBH; Condit 1998).
We sampled 138 species, including the 48 most abundant spe-
cies, and every species in seven of the eight most species-rich
woody genera (Eugenia [4 species], Inga [17], Miconia [12],
Ocotea [9], Piper [11], Protium [5] and Psychotria [21]). Sev-
eral of these genera are paraphyletic but form mono-
phyletic clades when subsidiary genera are merged (Erickson
et al. 2014). Hence, these figures include Clidemia and Lean-
dra among the Miconia, Nectandra among the Ocotea
(Erickson et al. 2014), Tetragastris among the Protium
(Daly and Fine in press), and Carapichea and Palicourea
among the Psychotria (Nepokroeff et al. 1999). We refer to
these clades by the most species-rich generic name on BCI.
The 138 species represent 89% of the stems ≥1 cm DBH in
the 2010 census.
The Smithsonian Environmental Research Center (SERC)

in Edgewater, MD (38°530 N, 76°330 W), supports temperate
deciduous forest. The 2014 census of a 16-ha FDP recorded
69 species with individuals ≥1 cm DBH. We sampled all 18
invasive species and 47 native species, including all species in
the three most species-rich genera (Carya [3 species], Quercus
[8], and Viburnum [3]). The 47 native species represent 99% of
the native stems ≥1 cm DBH in the FDP.

Liquid chromatography-tandem mass spectrometry
(LC-MS/MS)

We collected expanding, unlignified leaves from the
shaded understory between April and August 2014 from 611
randomly chosen individuals of the 203 focal species,
providing a mean of 3 individuals per species and a range of
1–10; 152 species were represented by ≥3 individuals. Sedio
et al. (2017, 2018) describe chemical methods in detail.
Briefly, we extracted 100 mg of homogenized leaf tissue
twice with 700 lL 90:10 methanol: water at pH 5 for
10 min. This solvent extracts small molecules of a wide
range in polarity. Mild acidity aids the extraction of
alkaloids. We used ultra high-performance liquid

chromatography, electrospray ionization and molecular
fragmentation, and tandem mass spectrometry (MS/MS) to
analyze extracts (Sedio et al. 2017, 2018) and the Global
Natural Products Social (GNPS) Molecular Networking
tool to cluster the MS/MS spectra into consensus spectra
that represent unique structures (see Appendix S1: Table S1;
Wang et al. 2016). We refer to consensus spectra as com-
pounds throughout.
Molecules with similar structures fragment into many of

the same sub-structures. Thus, the similarity of mass to
charge ratio (m/z) of the fragments of two molecules reflects
their structural similarity. We quantified structural similarity
for every pair of compounds from all 203 species as the
cosine of the angle between vectors defined by the m/z values
of their constituent fragments (Wang et al. 2016). Cosine
values <0.6 are unlikely to reflect meaningful levels of chem-
ical structural similarity and were zeroed (Wang et al. 2016).
Our MS data can be found at http://gnps.ucsd.edu/Prote
oSAFe/status.jsp?task=d1f7f083fa554f2c9608f238c1ccda0e.
Our methods detect both primary metabolites involved in

core metabolic pathways, which tend to be conserved across
most plants, and secondary metabolites involved in defense.
Secondary metabolites will dominate the combined metabo-
lomes of 203 species due to their greater diversity and much
greater interspecific variability (Salminen and Karonen 2011).

Chemical structural and compositional similarity (CSCS)

Sedio et al. (2017) developed a metric that quantifies
chemical structural-compositional similarity (CSCS) over
all compounds in two species. Conventional similarity
indices such as Bray-Curtis incorporate shared compounds,
but ignore structural similarity of unique compounds. In
contrast, CSCS incorporates the structural similarity of
compounds that are unique to each species. A simple exam-
ple illustrates the implications. Compounds x and y are
structurally similar (cosine ≥0.6). Species A contains com-
pound x but not y, and species B contains y but not x. In
this example, compounds x and y contribute zero to Bray-
Curtis similarity, but make a positive contribution to CSCS
based on their structural similarity.
Chemical structural-compositional similarity weights the

similarity (cosine score if ≥0.6 or 0 otherwise) of every pair-
wise combination of compounds in two species by the pro-
duct of their proportional ion intensities in each species
(Sedio et al. 2017). Proportional ion intensities equal mean
ion intensities over conspecific individuals for each com-
pound standardized by the summed means for each species.
We calculated CSCS for all 20,503 pairs of species. We also
recorded the chemical similarity between each species and
its nearest neighbor in chemical space by selecting the great-
est CSCS value for each species. We refer to this metric as
nearest-neighbor CSCS (CSCSnn).

Statistical analyses

We used phylogenetically independent contrasts (PICs) to
test for relationships between chemical similarity and phylo-
genetic distance. Each PIC equals the mean CSCS for all
pairs of species descended from each node in the phylogeny.
We refer to this metric as CSCSmrca, where MRCA refers to
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most recent common ancestor. This calculation is illustrated
in Appendix S1: Fig. S1. To evaluate phylogenetic signal, we
regressed CSCSmrca against log-transformed phylogenetic
distance. To generate the phylogenies, we pruned the Forest-
GEO-CTFS mega-phylogeny (Erickson et al. 2014) to the
126 and 34 species present in our BCI and SERC data,
respectively (Appendix S1: Fig. S2).
To determine whether CSCS differed between forests, we

performed a one-way ANOVA with forest (Maryland or
Panama) as the effect. To overcome the statistical depen-
dence of metrics calculated for pairwise combinations of
species, we performed the ANOVA on 10,000 random draws
of independent pairs of species. CSCS differed significantly
between forests if 95% of the 10,000 ANOVAs were signifi-
cant. To determine whether CSCSnn differed between for-
ests, we performed phylogenetic ANOVA using ‘geiger’
(Harmon et al. 2008).
To test for differences in the chemical space occupied by

two groups of species, we first used non-metric multidimen-
sional scaling (NMDS) to reduce the molecular network to
two dimensions (using the ‘MASS’ package in R; Venables
and Ripley 2002). We then compared the observed differ-
ence in area occupied by the two groups with the distribu-
tion of differences generated by 10,000 randomizations.
Randomizations reassigned species to groups. The chemical
space occupied by two groups differed significantly if the
observed difference in area was greater than 95% of random-
ized differences. All analyses excluded the 18 introduced spe-
cies at SERC. Appendix S1 presents results of analyses that
include the introduced species.

RESULTS

We detected 126,746 compounds, ranging from 107.06 to
2,174.66 Daltons (Da), in foliar extracts of 185 native spe-
cies from BCI and SERC. The GNPS database of natural
products (Wang et al. 2016) included 130 matches with these
compounds. Matches include flavonoids, piperazines, quino-
line alkaloids, indole alkaloids, and terpenoids, classes of
secondary metabolites known to include anti-herbivore
defenses, as well as some primary metabolites, including
chlorophyll and simple carbohydrates (Fig. 1). Networks of
compounds linked by cosine scores ≥0.6 ranged in size from
2 to 23,029 compounds, and 95,407 compounds had cosine
scores <0.6 with every other compound (Fig. 1). In many
instances, compounds unique to one or a few species com-
prise subnetworks of structurally similar compounds (Sedio
et al. 2017). Such clusters of structurally similar compounds
might represent structural precursors or alternative products
from shared metabolic pathways.
Phylogenetic signal differed between sites. For BCI,

CSCSmrca was unrelated to log-transformed phylogenetic
distance (t = �1.28, df = 123, P = 0.205; Fig. 2a), indicat-
ing a strong tendency for chemical divergence among closely
related species. For SERC, CSCSmrca was strongly related to
phylogeny (t = �3.59, df = 31, P = 0.001; Fig. 2b), indicat-
ing that closely related species have similar metabolomes.
Chemical compositional similarity was phylogenetically con-
served for SERC but not for BCI species.
The strong site difference in phylogenetic signal suggests

closer examination of site differences in chemical similarity.

Chemical similarity (P < 0.0001; Fig. 3a) and chemical sim-
ilarity to the nearest neighbor in chemical space
(P < 0.0001; Fig. 3b) were both lower for BCI species than
for SERC species (Appendix S1: Tables S2, S3). The largest
genera made an important contribution to these site differ-
ences, with CSCS and CSCSnn being much lower for the
seven species-rich BCI genera than for the three species-rich
SERC genera (Fig. 3c, d).
The NMDS ordination illustrates the chemical space repre-

sented by 138 BCI species and 47 native SERC species
(Fig. 4a). Species comprising the largest BCI genera occupied
a greater area in chemical space than the remaining BCI spe-
cies (P < 0.001; Figs. 4b, c, e). In contrast, species comprising
the largest SERC genera did not comprise a greater chemical
space than the remaining SERC species (P = 0.707; Fig. 4d).
Results were qualitatively similar for analyses that included
the 18 introduced SERC species (Appendix S1).

DISCUSSION

Plant enemies that attack chemically similar host species
are thought to mediate competitive exclusion of chemically
similar plant species (Gillett 1962, Sedio and Ostling 2013,
Salazar et al. 2016) and select for chemical divergence
among closely related plants (Becerra 1997, Kursar et al.
2009). This hypothesis predicts that plant defenses should
diverge rapidly, minimizing phylogenetic signal. Leaf meta-
bolomes lacked phylogenetic signal for the BCI community,
which is consistent with the hypothesis. Selection for diver-
gence among close relatives, competitive exclusion of chemi-
cally similar close relatives, or both might drive the absence
of phylogenetic signal at BCI. Phenotypic plasticity is less
likely to be important because metabolomic variation is
much greater between than within species at BCI (Sedio
et al. 2017). In contrast to BCI, leaf metabolomes exhibited
clear phylogenetic signal for the temperate SERC commu-
nity, which is inconsistent with the hypothesis that plant ene-
mies exert strong selection for divergence among closely
related plants. This suggests an interesting difference
between tropical and temperate plant communities.
Dobzhansky (1950) proposed that biotic interactions com-

prise a stronger selective force than the physical environment
in the tropics. Indeed, herbivore and pathogen pressure is
greater, and host ranges narrower, in the tropics than at higher
latitudes (Coley and Barone 1996, Dyer et al. 2007, Schemske
et al. 2009, Lim et al. 2015). If natural enemies exert stronger
selection for chemical defense and divergence in the tropics,
then tropical plants should exhibit greater quantitative invest-
ment in chemical defenses and/or greater chemical dissimilar-
ity than temperate plants (Coley and Aide 1991).
There are fundamental chemical differences between trees

from tropical Panama and temperate Maryland. The tropi-
cal tree species were much less chemically similar when com-
pared to closely related species (Fig. 2), to the most
chemically similar species (Figs. 3b, 4a), and over all species
(Figs. 3a, 4a). Chemical similarity was also consistently
lower among species-rich tropical genera than among spe-
cies-rich temperate genera (Figs. 3c, d, 4b–d). These results
are consistent with the hypothesis that plant-enemy interac-
tions are stronger in the tropics, leading to rapid evolution
of phytochemical diversity in tropical trees.
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The contrasting relationships between chemical similarity
and phylogenetic distance between sites (Fig. 2) suggest con-
trasting community assembly and selection regimes. Chemical

similarity and phylogenetic distance were decoupled at BCI
(Fig. 2a). This suggests chemical differences accrue rapidly at
speciation events or with selection for divergence among
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closely related species. In contrast, chemical similarity and
log-transformed phylogenetic distance were linearly related at
SERC. This exponential decay of chemical similarity suggests
a constant net rate of chemical divergence over time (Ricklefs
2007). This marked contrast in phylogenetic signal suggests
that selection for chemical divergence among close relatives
or competitive exclusion by chemical similarity is stronger in
the tropical than in the temperate community.
The absence of phylogenetic signal in foliar metabolomic

similarity among BCI tree species presents a stark contrast
with leaf functional traits such as mass per area; tissue
density; lamina toughness; vein toughness; cellulose, lignin,
nitrogen, phosphorus and potassium content; and carbon-to-
nitrogen ratio, all of which exhibit phylogenetic signal (Leb-
rija-Trejos et al. 2014). This contrast suggests that leaf
metabolomes diverge more rapidly than leaf functional traits
during or shortly after speciation in tropical trees and is con-
sistent with the hypothesis that traits with a greater capacity
for reciprocal coevolution between plants and their enemies
promote diversification, especially at low latitudes (Schemske
et al. 2009).

The hypothesis that biotic interactions are more intense in
the tropics and contribute to the global latitudinal diversity
gradient has seen recent controversy (Moles et al. 2011a, b,
Anstett et al. 2016). A key prediction of this hypothesis is that
plants should invest more in defense or exhibit greater novelty
in defense at lower latitudes (Schemske et al. 2009). Recent
evaluations of this prediction have focused on quantitative
investment in defense, with mixed results (Coley and Aide
1991, Moles et al. 2011a, b). In contrast, our data suggest that
qualitative chemical differences are greater among tropical
species than among temperate species. Qualitative differences
in chemical defenses have the potential to constrain the host
ranges of herbivores and pathogens, enabling enemy-based
niches, and may be especially important among members of
species-rich tree genera that otherwise share similar niches
(Kursar et al. 2009, Sedio et al. 2012, Salazar et al. 2016).
Our results suggest that these qualitative differences evolved
more rapidly for a tropical than a temperate community
(Fig. 2), and hence that selection for divergence in secondary
metabolites is greater in tropical than in temperate plants,
even if quantitative investment is not (Moles et al. 2011a, b).
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The extension of our conclusions beyond one tropical
and one temperate forest to understand global ecological
patterns will require comparative forest metabolomics of
multiple sites along broad latitudinal gradients using con-
sistent methods. Ideally, these sites would include several
biogeographic regions. By permitting the study of hundreds
of thousands of metabolites in hundreds of species, the
metabolomics approach presented here enables a more
mechanistic understanding of the role that chemical varia-
tion plays in niche partitioning and in lineage diversifica-
tion at community, biogeographic, and macroevolutionary
scales (Sedio 2017). Ultimately, collaborative efforts to inte-
grate metabolomics with plant-enemy associations, plant
performance relative to chemical similarity of neighbors,
and phylogeny over geographically diverse sites will be nec-
essary to test the hypothesis that chemically mediated biotic
interactions are a primary contributor to global patterns of
plant diversity.
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